Exploiting Quality and Texture Features to Estimate Age and Gender from Fingerprints
نویسندگان
چکیده
Age and gender of an individual, when available, can contribute to identification decisions provided by primary biometrics and help improve matching performance. In this paper, we propose a system which automatically infers age and gender from the fingerprint image. Current approaches for predicting age and gender generally exploit features such as ridge count, and white lines count that are manually extracted. Existing automated approaches have significant limitations in accuracy especially when dealing with data pertaining to elderly females. The model proposed in this paper exploits image quality features synthesized from 40 different frequency bands, and image texture properties captured using the Local Binary Pattern (LBP) and the Local Phase Quantization (LPQ) operators. We evaluate the performance of the proposed approach using fingerprint images collected from 500 users with an optical sensor. The approach achieves prediction accuracy of 89.1% for age and 88.7% for gender.
منابع مشابه
Evaluation of Texture Descriptors for Automated Gender Estimation from Fingerprints
Gender is an important demographic attribute. In the context of biometrics, gender information can be used to index databases or enhance the recognition accuracy of primary biometric traits. A number of studies have demonstrated that gender can be automatically deduced from face images. However, few studies have explored the possibility of automatically estimating gender information from finger...
متن کاملارتباط بیماری دیابت و اعتیاد با اثر انگشت
Background: Human skin more than any other part of the body, is exposed to the risks of diseases and complications of labor. One of the applications of study on the relationship between skin and diseases is use of fingerprints in the diagnosis and the subsequent treatment of it. We analyzed the fingerprint images of two systematic diseases namely diabetes and addiction. Methods: The f...
متن کاملFusion of Fingerprint and Age Biometric for Gender Classification Using Frequency and Texture Analysis
Classification of gender from fingerprints is one of the important steps in forensic anthropology. This forensic anthropology is used to identify the gender of a criminal in order to minimize the suspects list of search. A very few researcher have worked on gender classification using fingerprints and have gain the competitive results. In this work we are trying to fuse the fingerprint and age ...
متن کاملAutomatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملAuthor gender identification from text using Bayesian Random Forest
Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...
متن کامل